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NOTE

DYNAMIC HIERARCHICAL FACTOR MODELS

Emanuel Moench, Serena Ng, and Simon Potter*

Abstract—This paper uses multilevel factor models to characterize within-
and between-block variations as well as idiosyncratic noise in large dynamic
panels. Block-level shocks are distinguished from genuinely common
shocks, and the estimated block-level factors are easy to interpret. The
framework achieves dimension reduction and yet explicitly allows for
heterogeneity between blocks. The model is estimated using an MCMC
algorithm that takes into account the hierarchical structure of the factors.
The importance of block-level variations is illustrated in a four-level model
estimated on a panel of 445 series related to different categories of real
activity in the United States.

I. Introduction

ECENT research has found that dimension reduction in the form

of common factors is useful for forecasting and policy analysis
in a data-rich environment. However, a fair criticism of factor models
is that the estimated factors are difficult to interpret. One reason is that
the factors are typically estimated from a large panel of data without
taking full advantage of the data structure. This paper proposes a fac-
tor model that uses common and block-specific factors to capture the
between- and within-block variations in the data. Each block can be
further divided into subblocks to arrive at a hierarchical (multilevel)
model. A distinctive feature of the model is that the transition equations
for the factors at each level have time-varying intercepts that depend on
the factors at the next higher level. We show how this can be taken into
account in state-space estimation.

A natural use of the hierarchical model is real-time monitoring of eco-
nomic activity, which requires filtering news from noise as data arrive
on a staggered basis. This can be handled by using the timing of the data
releases to organize the data into blocks. More generally, the model can
be applied whenever a panel of data can be organized into blocks using a
priori information or statistical procedures. The block structure provides
a parsimonious way to allow for covariations that are not sufficiently
pervasive to be treated as common factors. For example, in multicountry
data, there could be series-specific, country (subblock), region (block),
and global (common) variations. If the country and regional variations
are not properly modeled, they would appear as either weak common
factors or idiosyncratic errors that would be cross-correlated among
series in the same region.

The remainder of this paper is organized as follows. Section II
introduces the hierarchical model and its state-space representation.
Estimation via Markov chain Monte Carlo methods is presented.
In section III, a four-level model is used to analyze 445 economic
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time series on real economic activity in the United States. We find
that comovement at the block level tends to be more important than
comovement across all variables. Furthermore, the principal compo-
nents estimator tends to treat block-level variation as common. Section
IV concludes.

II. A Hierarchical Dynamic Factor Model

We assume that the data are stationary, mean zero, standardized
to have unit variance after possible logarithmic transformation and
detrending. Let Nj, denote the number of variablesinblockb = 1,...,B,
andlet N = (N, +. ..+ Np) be the total number of variables, each with
T time series observations. We assume that N and T are both large but
that B is much smaller than N.

Consider the two-level dynamic factor model considered in Geweke
(1977) and Sargent and Sims (1977). Fort = 1,...,T,n=1,...,N,
andk = 1,..., Kr, the data are assumed to be generated as

X = V' (L)F; + vy,
Yrx(L)Fy = €pu, ¢))

where F; = (Fyy, . .., Fg)' is aKr x 1 vector of common factors, \" (L)
is a distributed lag of loadings on F;, and v, is the idiosyncratic error.
We generalize this two-level model by positing that at each ¢, series n
in a given block b has three sources of variations: idiosyncratic, block
specific, and common. Let the mean zero block-level factors be Gy, =
(Gb1rs - - - Gokgye)- For n = 1,..., Ny, a three-level representation of
the data is

Xopne = )\'(';,b(L)th + expnr» )
ijt = )\"p,b(L)F t + eGbjes 3)

where g, (L) is a distributed lag in the block-level factor loadings and
Ng (L) is a distributed lag of loadings on the common factors. In the
terminology of multilevel models, equation (2) is the level 1 equation
and equation (3) is the level 2 equation. The stochastic process for
F; given in equation (1) would constitute the level 3 equation. In this
three-level model, variables within a block are correlated because of
the common factors F, or the block-specific variations ecp;;. However,
correlations between blocks are possible only through F;,.

For some blocks, it may be appropriate to break up the data into
subblocks. Let Z,,,, be the nth series in subblock s of block b at time
t. Let Hy,, be the Ky, factors in subblock s. The level 4 dynamics are
defined by

Zpsnt = Npp ps (LY Hpss + €zpsne,
Hpss = AGys(L)Gpr + eypst,
Gy = Arp(L)F, + egyr-

Because not all series need to belong to blocks and subblocks, the data
used in a level 4 model are a mixture of Zyy, Xpni, and Xy, In general,
amodel at any level can always be decomposed into a sequence of two-
level models as long as there is a reasonable number of series at each
level.
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An example helps to illustrate the key features of the model. Sup-
pose that we are given data for production, employment, consumption,
and so on. Then X;; would be one of the N; series collected for pro-
duction, X,;; would be one of the N, series collected for employment,
X3;; would be one of the N3 consumption series, and so forth. The pro-
duction, employment, and consumption factors Gy,, G, and G3; would
be correlated because of economy-wide fluctuations, as captured by
F,. However, if the N, employment series are derived from two differ-
ent surveys, specifying two employment subblocks would allow us to
model the two independent signals about the state of the labor market.

To close the model, the idiosyncratic components, the subblock-
specific, block-specific, and economy-wide factors are assumed to
be stationary, normally distributed autoregressive processes of order
92bsn» GXbn> GHpgi> 9Gpy» AN G, respectively. That is, forb = 1,...,B,

Yrix(L)Fy = €Fpa,

Ye.pj(L)ecsjr = €cbjr,

&, ~NQ©,03) k=1,...Kp,
€Gbj ~N(0’0(2’ij) j=1,...,Kcp,

2 .
Y bsi(L)erbsit = €npsits €npsi ~ N0, 0p,) i=1,...,Kp,,

Yx.bn(L)exbn = €xont € ~ N©0,0%,) n=1,...N,

Vzsm(L)ezbont = €zomsts  €znvst ~ N(0,0%5,) n=1,...Nps.
The lag orders can differ across units, subblocks, and blocks. The model
could be further enriched by allowing for stochastic volatility or Markov
switching effects at different levels of the hierarchy.

The factors and the loadings are not separately identified even in a
two-level dynamic factor model. To see this, let X; = (Xy,,...,Xn,)
so that in vector form, the observation equation of the model is X; =
A(L)F,+e,. Obviously there could exist an invertible polynomial matrix
O(L) of arbitrary order such that the common component A(L)F; is
observationally equivalent to A(L)F,, where A(L)=A(L)®(L) and
F, = @()~'F,. To achieve identification, two-level models often
assume that A(L) = A is a constant lower triangular matrix of order 0
where the elements on the diagonal have a fixed sign (see Geweke &
Zhou, 1996; Aguilar & West, 2000). The assumption of constant, lower
triangular factor loading matrices can still be used to handle multiple
factors in a hierarchical setting. Note that the lower triangular struc-
ture is necessary but not sufficient for identification when A\"(L) has
lagged dynamics. As shown in theorem 3 of Heaton and Solo (2004),
additional restrictions on the polynomial structure will be necessary
even for two-level models. Since the data are standardized to have
unit variance, we further assume that innovations to the factors have
fixed variances. Then Wr, WG, WH bs, Wx.bn» $zbsn, and the idiosyn-
cratic variances oxp, and 0z, are free parameters that adjust to satisfy
the variance decomposition identity.

A unique feature of the hierarchical structure is that the transition
equation at the block and subblock level has a time-varying intercept
since the autoregressive dynamics of egy;; imply that

V65 (L)Gy = Yo s (L) Arp(L)F: + €G-
This leads to the block-level transition equation,

Gu = ot + WG61Gp—1 + - .. + WGy Gbr—qgp + €Gbrs C))
where or = Wgs(L)Ars(L)F; is correlated across blocks due to F;.
Intuitively, knowledge of the comovement across blocks is useful in
estimating the block-specific dynamics. Similarly, the dependence of
H, on G, implies that

Hyg = aGbs + WHpst Hps—1 + - - . + WHobsqyy, Hbst—qpyy,, + €Hbsts

THE REVIEW OF ECONOMICS AND STATISTICS

where oGy = WYaps(L)AGss(L)Gp is common across subblocks. In
section IIB, we show how this additional term can be incorporated into
a standard sampling method for linear state-space models. Section A.1
in the appendix summarizes the main equations of the four-level model.

A. Related Work

A vast number of papers in macroeconomics and finance have studied
variants of the two-level dynamic factor model. The difference between
our multilevel and a two-level model is best understood when there is
a single factor at each level. With Kgp, = Kr = 1,

X = )\'(';.,,()\JI.:,,,F t + eGer) + exons
= MonF: + Vo, ®

where Apn = M3, Nr, and Ve = N5 ,€Gor + expm. A standard two-
level factor model ignores the block structure and simply stacks all
observations up. The data would be modeled as

Xpt = MoFy + V.

This two-level representation corresponds to an exact factor model if the
block-specific components {egy; : b= 1,. .., B} were O for all ¢, but is
an approximate factor model if v,; was weakly correlated across nand .
Weak cross-sectional correlation requires that the variation in vy, is not
dominated by egy; as N — oo and N, — oo. Instead of imposing this
possibly invalid assumption, our hierarchical model explicitly specifies
the block structure. The factors are also easier to interpret because the
data blocks have a well-defined interpretation.

Multilevel factor models have been considered extensively in the psy-
chology literature. As seen from the review in Goldstein and Browne
(2002), for example, these models do not allow for dynamics and typ-
ically assume that either T or N is small. Dynamic hierarchical linear
models were considered by Gammerman and Migon (1993), but there
are no latent variables.

Two models closely related to ours are Diebold, Canlin, and Yue
(2008) and Giannone, Reichlin, and Small (2008). Diebold et al. (2008)
study a three-level hierarchical factor model for government bond yield
data from four countries. They estimate their model in two steps.
Country-level yield factors are first estimated by nonlinear least squares
and then treated as data in the estimation of the global factors. Hence,
they do not take into account the global factor dynamics in the esti-
mation of the country-level block factors. Giannone et al. (2008) are
interested in taking advantage of the different timing of data releases
for the purpose of “now-casting.” First, they estimate the static fac-
tors in a two-level model by principal components. Then they estimate
the loadings in a second step using Kalman filtering and smoothing
techniques.

Kose, Otrok, and Whiteman (2003, 2008) use multilevel factor
models to study international business cycle comovements. For each
observable variable n in country b, they have

Xbnt = CnFy + dpnec: + exonrs

where F, is a world factor, egy is a common shock specific to region b
(such as Europe or Asia), and exy, is a component specific to variable n
in country b. A similar framework has been used by Stock and Watson
(2009) to analyze national and regional factors in housing construction.
While we take a bottom-up approach, which explicitly estimates the
factors at each level, their top-down approach yields only a block-level
component ey, that is orthogonal to F;. Thus Kose et al. (2003, 2008)
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can estimate only European or Asian factors that are uncorrelated with
the global factors, but not factors for those regions per se. Another
important difference is that ¢, is unconstrained in Kose et al. (2003),
which vastly increases the number of parameters to estimate. Since we
impose that Gy, is linear in F,, the responses of shocks to F, for all
variables in block b can differ only to the extent that their exposure to
the block-level factors differs. Because of this hierarchical structure, we
have a total of K x Kr and N x K parameters characterizing loadings
on F, and G,, whereas Kose et al. (2003) have N x Kr and N x K¢
parameters, respectively. As K¢ is much smaller than N, our framework
is more parsimonious.

B. Estimation via Markov Chain Monte Carlo

The simplest way to estimate the hierarchical model is to first esti-
mate H, subblock by subblock via principal components, then estimate
G, from the principal components estimates of H;, and finally estimate
F; from the principal components estimates of G,. However, sequen-
tial estimation by principal components would not take into account
the dependence of H, on G; and G; on F, through o, and ag,, respec-
tively. Furthermore, principal components estimates the static and not
the dynamic factors.

Kose et al. (2003) use Gibbs sampling to estimate latent dynamic
factors. By considering their conditional joint distribution, they have
to invert a variance-covariance matrix of rank T at each sweep of the
sampler. The procedure is computationally costly when N and T are
both large. We put more structure on the factors between levels, and
we exploit the prediction error decomposition of F; and G, to avoid
inverting large matrices.

Specifically, we use the MCMC, which samples a Markov chain that
has the posterior density of the parameters as its stationary distribution.
Kim and Nelson (2000) and Lopes and West (2004), among others, have
used the algorithm proposed in Carter and Kohn (1994) and Frithwirth-
Schnatter (1994) to estimate two-level factor models with a single factor.
We generalize the algorithm to allow for a multilevel structure with
multiple factors.

Let A = (Ay,AG AF),¥ =
(XF, Xg, h, £z). The main steps are:

(\pFa \pG’ \I’H’ \I"Z)vz =

1. Organize the data into blocks and subblocks to yield Zy,,b =
1,...B,s = 1,...Bs. Get initial values for {H,}, {G,}, and {F,}
using principal components. Use these to produce initial values
for A, ¥, X,

. Conditional on A,¥,X,{G,} and the data 2Z,
{Hp} Y b V s.

. Conditional on A, ¥, X, {H,,} and {F,}, draw {G}} V b.

. Conditional on A, ¥, X, and {G,}, draw {F,}.

. Conditional on {F;}, {G,}, and {H,}, draw A, ¥, and X.

. Return to 2.

N

draw

AN bW

To analyze series X,, without a subblock structure, H, would be
dropped from the algorithm and step 2 would be omitted. To analyze
series X,,; without a block structure, G, as well as steps 2 and 3 would
be omitted, and the algorithm reduces to that for a two-level model.
The only complication going from the two-level to a multilevel model
is that the transition equations for the subblock and the block-specific
factors feature time-varying intercepts that depend on the factors at the
next higher level. This dependence needs to be taken into account in
sampling the factors. .

Denote Eg, the set of parameters {Ag p, \-I'Ic,b,ig,b, 2},,,}. The mod-
ified algorithm consists of first running the Kalman filter forward to
obtain the sequence {Gp;;} that accounts for &r 5 and the corresponding

1813

covariance matrix 13(;,,111 in period T based on all available sam-
ple information. This implies the following prediction and updating
equations:

Gpri1)e = OFpr + Y6.5Ghrprs
- - -
Papri1ye = Y6oPobnt Vs + Z6bs

- - 2,
Gpnr = Gorj—1 + Popi-1486
> = - \~1 /. 2 o
X (AG.bPGbm—lA'G.b + z3){.1;) (th - AG.bitlt—l) ,
3 !
Pgorie = Pgor-1 — Pebre-1A¢y

=2 2 -\l =z
X (AG‘bPth[t—lAlG_b + z31(.1;) AGoPGory—1-

We can then sample the entire set of factor observations conditional
on the parameters Eg, and all the data. The Gaussian and Markovian
structure of the state-space model imply that the distribution of Gy,
given Gy, and X,, is normal. Thus,

5o s s
Gt Xbr, Gpr15 Ecb ~ N (Gbm,a;;t +|,P Gbtit G}, +1) )

where using é;, 41 and ‘-i’:;.b to denote the first Kg, rows of E;b,H and
We p, respectively:

= S
th|x,Gl";t +1 =E [Gblleh Gbr+1]

- - - 5 = - - \~!
! !
= Gbm + P th|t‘l’z;.b (‘l’abP thlt\ya_b + 2‘lG.b)
X (G;t+l — QFbt4+1 — \I’E,bit|t)-

S 2
Pthlr,G,”,"“ = Var(Gp| X, th+l)
- W . P, o\l
! !
= Pgore — Poont VG, (\I'E,,,Pcbm‘l’&,, + Ec.b)

X w:;,bPthlt-

Given these conditional distributions, we can then proceed backward to
generate draws Gy, for t=T—1,..., 1. The subblock factors H, are
sampled in an analogous manner, taking into account the dependence
on the block-level factors via the time-varying intercept oG ps-

III. A Four-Level Model of Real Activity

We illustrate our model with a hierarchial factor analysis of real
economic activity in the United States using a balanced panel of 445
monthly time series from 1992:01 to 2011:03. The data include series on
capacity utilization, industrial production, manufacturers’ shipments,
inventories and orders of durable goods, the labor market as perceived
by firms and households, retail sales, wholesale trade, housing starts,
new home sales, and manufacturing surveys.

We arrange the data into five blocks: production, employment, con-
sumption, housing, and manufacturing surveys. The housing block
comprises data on housing starts and new home sales, while the man-
ufacturing survey block combines data from the Institute for Supply
Management, the Philadelphia Fed, and the Chicago Fed. The other
three blocks have subblocks that are defined as follows. Industrial
production (IP), capacity utilization (CU), and durable goods (DG)
constitute the production block; the establishment survey (ES) and the
household survey (HS) constitute the employment block; retail sales
(RS) and wholesale trade (WT) constitute the consumption block. Our
blocks are thus defined using prior information about the structure of the
data. An analysis could also be conducted with the blocks determined
by statistical criteria such as suggested by Hallin and Liska (2008).
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TABLE 1.—DATA AND MODEL STRUCTURE

THE REVIEW OF ECONOMICS AND STATISTICS

TABLE 2.—CORRELATION OF &,; WITH Gyjy AND Hyg;

Block Subblock Source N Khips r Block j Factor j R?
Production CU Fed 25 1 1 Employment 1 0.16
IP Fed 38 1 2 Employment 1 0.17
DG Census 60 2 2 Manufacturing surveys 1 0.25
Employment ES BLS 82 2
HS BLS 92 1 Block j Subblock s Factor i R?
Consumption WT Census 54 1 1 Production P 1.00 0.29
RS Census 30 1 .

. 1 Production DG 2.00 0.25
Housing Census 2 1 Employment ES 1.00 022
Manufacturing surveys ISM, Fed 35 ) Employment ES 2.00 014

This table summarizes the block structure of the four-level model of real activity in the United States 2 Production CcuU 1.00 0.17
discussed in section III. The data sources for the variables in the block, the number of series N in the block, 2 Producti DG 2.00 0.36
as well as the number of estimated subblock factors Ky are provided. Fed denotes the Federal Reserve, uction . .
BLS the Bureau of Labor Statistics, Census the Census Bureau, ISM the Institute of Supply Managers. 2 Employment ES 2.00 0.55
2 Consumption RS 1.00 0.15
This table izes the R’s obtained from of &, onto Gy, and Hpy,. & is the residual

However, the prior information facilitates interpretation of blocks and
the factor estimates.

‘We assume that the factor loading matrix is constant and estimate one
common factor, one common factor per block, and one or two factors
per subblock.! For the two subblocks with K, = 2, we follow Aguilar
and West (2000) and assume a lower triangular factor loading matrix
with 1’s on the diagonal:

1 0
Nibsy | 1
Abbs = | Mibsy,

)\H bs3 2 . (6)

)'H.bsNst )\H'bSNbS,Z

This normalization implies that in the presence of multiple subblock-
level factors, the first factor loads only on the variable ordered first in
a given subblock. It further identifies the signs of the factors. We order
first the series thought most likely to represent the subblock dynamics.
A summary of the data structure is provided in table 1. The data are
transformed to be stationary using Stock and Watson (2008) as a guide.
After the data transformation, our sample effectively starts in April
1992, giving T = 227 observations for all blocks. A list of all 445
series is provided in the online appendix.

We assume the prior distribution for all factor loadings A and auto-
correlation coefficients W to be Gaussian with mean zero and variance
1. The prior distribution for the variance parameters is that of an inverse
chi square distribution with v degrees of freedom and a scale of d where
v and d? are set to 4 and 0.01, respectively. After discarding the first
50,000 draws as a burn-in, we take another 50,000 draws, storing every
fiftieth draw. The reported statistics for posterior distributions are based
on these 1,000 draws. We use the principal components estimates of the
factors as initial values for F;, G,, and H,. As a cross-check, we run the
MCMC algorithm using randomly generated numbers for the factors as
starting values and find that it converges to the same posterior means.
We also run the sampler on simulated data and find that it converges to
the true posterior means.

A. Comparison with Principal Components

Let a tilde denote estimates obtained by the method of principal com-
ponents, and let a “hat” denote estimates obtained from our MCMC
algorithm. The IC, criterion of Bai and Ng (2002) suggests two static
factors in our panel of 445 time series. If block-level variations are

1'We started by estimating two factors for each subblock and dropped
factors whose posterior distribution was not tightly estimated.

from a regression of F,, on F, where F,, is the rth factor d by principal comp and F, is the
posterior mean of the aggregate factor from the four-level model of real activity estimated using MCMC.

FIGURE 1.—COMPARISON TO PRINCIPAL COMPONENTS ESTIMATES

-1F

=2F

-3

-5 F
_'f-:
kot
-6 -
1990

A L

2006 2009

1993 1995 1998 2001 2004 2012

This figure plots the posterior mean of the common factor es}imate F (solid line) from our four-level
model of real activity along with the first principal p F (dashed line) d from the entire
data panel. Shaded areas indicate NBER recessions. The sample period is 1992:04 to 2011:03.

important, the principal components extracted from the entire panel
of data might capture block-specific rather than aggregate common
dynamics. A regression of the principal components F,, on F, yields
residuals &, for each r = 1,...,2. These are variations deemed com-
mon by the method of principal components but not by our hierarchical
model. We use regressions of &,; on &gy, and &ppg;r to check if these resid-
uals can be explained by our estimated block- and subblock-specific
components.

Table 2 reports the R? of these regressions that exceed 0.1. The resid-
uals associated with both the first and the second principal component
are correlated with the employment block factor, while &, is correlated
with Manufacturing Surveys. The residuals &, and &, are correlated
with all three subblocks of production. The largest correlation of 0.55
is between &,, and the second factor in the establishment survey sub-
block. Furthermore, ,, has a correlation of 0.36 with the second durable
goods factor. A possible explanation as to why principal components
treat these variations as pervasive is that the employment and durable
goods data are overrepresented (in terms of number of series) in the
panel.

Figure 1 graphs our F, and the first principal component F;,. Note
that F, is noticeably smoother than F,. For example, F;, features large
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TABLE 3.—DECOMPOSITION OF VARIANCE
Block Subblock Sharer Shareg Sharey Sharez
Posterior Mean (Standard Deviation)
Production CU 0.137 (0.027) 0.031 (0.006) 0.030 (0.005) 0.802 (0.035)
Production 1P 0.162 (0.028) 0.037 (0.006) 0.027 (0.005) 0.773 (0.035)
Production DG 0.032 (0.010) 0.007 (0.002) 0.177 (0.039) 0.784 (0.046)
Employment ES 0.012 (0.007) 0.122 (0.025) 0.213 (0.035) 0.652 (0.049)
Employment HS 0.003 (0.002) 0.026 (0.011) 0.109 (0.030) 0.863 (0.037)
Consumption WT 0.031 (0.011) 0.033 (0.010) 0.031 (0.010) 0.906 (0.029)
Consumption RS 0.010 (0.005) 0.011 (0.005) 0.106 (0.029) 0.874 (0.034)
Housing 0.010 (0.006) 0.074 (0.018) 0.916 (0.018)
Manufacturing surveys 0.034 (0.015) 0.096 (0.026) 0.871 (0.035)

This table summarizes the decomposition of variance for the four-level model of real activity. For each (sub)block of data, sharer, shareg, sharey, and sharez denote the average variance share across all variables

in the block due to aggregate, block-level, subblock-level and idiosyncratic shocks, respectively.

spikes in 1996 that are not prevalent in our common factor estimate F,.
One potential explanation for this relates to the government shutdown
of the budget in January 1996. Due to the large number of employment-
related series in the data set, the first principal component extracted from
the panel puts a lot of weight on this block-level event. In contrast,
it is appropriately treated as variations associated with the employ-
ment block in our model. Notice also that our estimated common factor
nicely tracks the two recessions in our sample period. According to the
common factor estimate, real activity bottomed at the end of 2001, con-
sistent with the official NBER business cycle chronology that reports
November 2001 as the trough of the recession. The estimated factor
also documents the striking collapse of real activity in late 2008 and its
subsequent sharp rebound in early 2009.

B. Importance of Block-Level Variations

Our model can be used to compute the importance of the aggre-
gate (sharer), block-specific (sharec), and subblock-specific (sharey)
components as well as idiosyncratic noise (sharez) relative to the total
variation in the data.

A two-level factor model does not distinguish between F; and G, or
H,. Table 3 reports the posterior means and standard deviations of the
estimated variance shares for all blocks and subblocks of our data set.
The latter show that all shares are precisely estimated.

For housing and manufacturing (which have no subblock struc-
ture), the block-specific variations, dominate the aggregate variations,
as shareg is much larger than sharer. The capacity utilization and
industrial production subblocks of production both have sharer of
around 0.15, while shareg and sharey are around 0.10. However,
for durable goods in the same block, sharer and shareg are much
smaller than sharey. Each of the two subblocks in the employment
block also features larger share and sharey than sharer . Interestingly,
in all categories, sharez exceeds 0.65 highlighting the importance of
series-specific shocks.

The hierarchical model also allows us to track the developments in
certain sectors of the economy. Figure 2 plots the estimated aggregate
factor F, along with G for the employment and the housing block. Lead-
ing into the 2001 recession, housing activity was stronger than aggregate
activity F, and only retracted briefly during the recession. The recession
of 2001 was followed by a jobless recovery as the employment factor
failed to keep pace with F; after the recession. In the most recent reces-
sion of 2008-2009, housing activity declined well ahead of aggregate
activity as measured by F, and dropped back to negative growth rates
after a brief recovery. Figure 2 thus shows that comovement in eco-
nomic time series can coexist with heterogeneous variations between

FIGURE 2.—FOUR-LEVEL MODEL OF REAL ACTIVITY WITH FIVE BLOCKS
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This figure plots the posterior mean of the common factor estimate F (solid line) along with the posterior
means of the block-level factors G for the nploym dashed line) and housing (dash-dotted) block,

pectively, esti d from our four-level model of real activity in the United States. Shaded areas indicate
NBER recessions. The sample period is 1992:04 to 2011:03.

blocks. The hierarchical model allows us to jointly model these common
variations at different levels.

IV. Conclusion

This paper lays out a framework in which the effects of aggregate,
block-level, and idiosyncratic shocks can be coherently analyzed while
still achieving a reasonable level of dimension reduction. By extract-
ing common components from blocks, the estimated factors have a
straightforward interpretation. While multilevel models are computa-
tionally more demanding than two-level models, explicitly modeling
the block level variation also makes it less likely that shocks at the
block level will be confounded with genuinely common shocks. Esti-
mation requires only a simple variation to existing MCMC methods for
estimating two-level factor models.
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APPENDIX
Al. Four-Level Model: State-Space Representation

Stacking all variables Z,,,, in a subblock and pseudo-differencing the seri-
ally correlated idiosyncratic components ez, We can write the observation
equation at the subblock level as

Zyy = Ayps(L)Hpst + €251, vb=1,...,B,Ys=1,...,Bs,

where Zy = Wzp5(L)Zpgs and Agyps(L) = W75 (L) A5 (L) is @ Np X Ko
matrix polynomial of order I}; = gz + ly. Moreover, the state equation at
the subblock level is

Hipt = 0Gbs + Vi bst Host—1 + * + + WHbsgy Hbst—gy + €Hpst
where

aGbst = WH.bs (L) AGos(L)Gpr, vo=1,...,B¥s=1,...,8.

THE REVIEW OF ECONOMICS AND STATISTICS

Together, these two equations imply the following state-space form:

Hypy
- . - - Hlm—l
Zpy = [AH.b:O Anps -+ AHJ»I,‘,] + €z
Hb.n—I;,
Hpy AG.bst Yrbn - WHisgy 0 -+ 0 Hpgyy
Hpy-y 0 1 0 - i Hpy—2
. = . + .
Hpst—s;, 0 0 - I 0---0] \Hompz
€Hbst
0
+ .
0
or
Zoa = AnssHpa + ez (Al)
Hypy = 860 + YhpsHpst—1 + €xpst (A2)

For blocks that do have a subblock structure, the observation and state
equation at the block level become

th
- - - - th—l
Hy, = [Acw Agpr -+ AGM;] . + €
G-z,

G OFbr Vo +++ Wogs 0+ 0 G-t
Gir-1 0 I o - G-
=] . |+ .

G-, 0 0 -« I 0---0] \Go-p1

€Gbr
0
+ .
0
or
Ay = A5G + Eapr, (A3)
Gy = Grp + Y65Gp-1 + €cor- (Ad)

For blocks that do not have a subblock structure, the observation and
state equation at the block level are

Xy = Ao (L)Gor + €xe
and Gy = arp + Y61 Go—1 + - . . + WG.bgq, Gbr—ga + €60t

where X, = Wyx,(L)Xp and Ags(L) = Wxp(L)Ags(L) is a N, x
Kgp matrix polynomial of order If; = gx + lg. Furthermore, ar; =
Ves(L)Ars(L)F,,Yb=1,...,B.

Finally, we have the following observation and state equations at the
aggregate level:

G; = ]\F(L)Fl + €Grt»
and F,=Vp F_1+...+ YrgFiy +¢€m,

(AS)
(A6)

where G, = Wg(L)G, and Ap(L) = Wg(L)Ar(L) is a Kg x Kr matrix
polynomial of order I} = g + Ir.
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A2. Variance Decomposition

The total unconditional variance for each individual variable Z,,, can be

decomposed according to

Var(Zpsn) = Y pmvec(Var(F)) + yg po,vec(Var(egy)) + - - -
+ Y psmvec(Var (exss)) + vec(Var(ezssm))

where
Iy I
y;".b.m = (Z )‘;Lbsn(l) ® x;ibsn(l)) X (Z )‘bbs(l) ® )‘ébs(l))
1=0 1=0
Ir
x (Z Mep() ® x;,,,(l))
1=0
Iy I
Yo = (Z Mt psn () ® x;,.,,ma)) x (Z Mo ® xe.,,,m)
=0 1=0
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Iy
Y;i.bsn = (Z )“;l.b.m(l) ® )";ibxn(l))

=0

g=1

-1
qF
vec(Var(F)) = [1 =) (¥ ® \IIF,,,)} vec(Er)

g=1

-1
496
vec(Var(egy)) = |:1 - Z (Wesy ® \IIG,,,,,)] x vec(Eg,)

qHbs

-1
vec(Var(epys)) = [ =D (Yhim ® \pﬂ.bsq)] x vec(Zy,,)

=1

qzbsn -t
vec(Var(ezen)) = [ 1= ) V3,0 | X Ohpon-
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