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NOTE

DYNAMIC HIERARCHICAL FACTORMODELS

Emanuel Moench, Serena Ng, and Simon Potter*

Abstract- This paper uses multilevel factormodels tocharacterize within-
and between-block variations aswell as idiosyncratic noise inlarge dynamic
panels. Block-level shocks are distinguished fromgenuinely common
shocks, and theestimated block-level factorsare easy tointerpret.The
frameworkachieves dimension reduction and yetexplicitly allows for
heterogeneity between blocks. The model is estimated using an MCMC
algorithm thattakes intoaccount thehierarchical structureof thefactors.
The importance of block-level variations is illustrated ina four-level model
estimated on a panel of 445 series related todifferentcategories of real
activityintheUnited States.

I. Introduction

RECENTof common
research

factors

has
is
found
useful

that
for

dimension

forecasting

reduction
and policy

in the

analysis

form

of common factors is useful forforecasting and policy analysis
in a data-rich environment. However, a faircriticism of factor models
is thattheestimated factors are difficultto interpret.One reason is that
thefactors are typically estimated froma large panel of data without

taking fulladvantage of thedata structure. This paper proposes a fac-
tormodel thatuses common and block-specific factors to capture the

between- and within-block variations in the data. Each block can be
furtherdivided into subblocks to arrive at a hierarchical (multilevel)
model. A distinctive feature ofthemodel is thatthe transition equations
forthefactors at each level have time-varying intercepts thatdepend on
thefactors at the next higher level. We show how this can be taken into

account in state-space estimation.
A natural use ofthehierarchicalmodel is real-timemonitoring ofeco-

nomic activity,which requires filteringnews from noise as data arrive

on a staggered basis. This can be handled by using the timing of the data
releases to organize thedata into blocks. More generally, themodel can
be appliedwhenever a panel ofdata can be organized into blocks using a
priori information or statistical procedures. The block structure provides
a parsimonious way to allow forcovariations thatare not sufficiently

pervasive to be treated as common factors. For example, inmulticountry
data, there could be series-specific, country (subblock), region (block),
and global (common) variations. If the country and regional variations
are not properly modeled, theywould appear as either weak common
factors or idiosyncratic errors thatwould be cross-correlated among
series in thesame region.

The remainder of this paper is organized as follows. Section II
introduces thehierarchical model and itsstate-space representation.
Estimation via Markov chain Monte Carlo methods is presented.
In section III, a four-level model is used to analyze 445 economic
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time series on real economic activity in the United States. We find
thatcomovement at the block level tends to be more important than

comovement across all variables. Furthermore, the principal compo-
nents estimator tends to treatblock-level variation as common. Section
IV concludes.

II. A Hierarchical Dynamic FactorModel

We assume thatthe data are stationary, mean zero, standardized
to have unit variance afterpossible logarithmic transformation and

detrending. LetNb denote the number ofvariables in blockb = 1
and letN = (N' + . . .+NB) be the total number of variables, each with

T time series observations. We assume thatN and T are both large but

thatB is much smaller than N.
Consider the two-level dynamic factor model considered in Geweke

(1977) and Sargent and Sims (1977). For t= 1,. . .,T,n = 1,. . .,/V,
and k= 1,. . .,Kp, the data are assumed to be generated as

Xnt= 'n{L)Ft + vnt,
^F.k(L)Fkt = (1)

where Ft = (Fu, . . .,FKfî)' is aÄT/rx 1vector ofcommon factors,V(L)
is a distributed lag of loadings on Ft, and vntis the idiosyncratic error.
We generalize this two-level model by positing thatat each i,series n
in a given block b has three sources of variations: idiosyncratic, block

specific, and common. Let the mean zero block-level factors be Gbt=
(Gb't, . . .,GbKGbt)>For n = 1,. . . a three-level representation of
the data is

Xbnt= X^(L)G* + exbnty (2)

Gbjt= 'jFb(L)Ft + eGbjt, (3)

where 'nGb(L) is a distributed lag in the block-level factor loadings and

X7Ft(L) is a distributed lag of loadings on the common factors. In the
terminology of multilevel models, equation (2) is the level 1equation
and equation (3) is the level 2 equation. The stochastic process for
Ft given in equation (1) would constitute the level 3 equation. In this
three-level model, variables within a block are correlated because of
the common factors Ft or the block-specific variations ecbjt-However,
correlations between blocks are possible only through Ft.

For some blocks, itmay be appropriate to break up thedata into

subblocks. Let Zbsntbe the nthseries in subblock s of block b at time

t.Let Hbstbe the KHbsfactors in subblock s. The level 4 dynamics are
defined by

Zbsnt= ^H.bs (L)Hbst + €zbsnty
Hbst= AG.bs(L)Gbt + eHbst^
Gbt= AF.b(L)Ft + ecbt-

Because not all series need to belong to blocks and subblocks, thedata
used in a level 4 model are a mixture ofZbsnt,Xbnt,andXnt.In general,
amodel at any level can always be decomposed into a sequence of two-
level models as long as there is a reasonable number of series at each
level.
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1812 THE REVIEW OF ECONOMICS AND STATISTICS

An example helps to illustrate the key features of the model. Sup-
pose thatwe are given data forproduction, employment, consumption,
and so on. Then XUtwould be one of the N' series collected forpro-
duction, Xnt would be one of the Ni series collected foremployment,
Xļitwould be one of theNļ consumption series, and so forth.The pro-
duction, employment, and consumption factors G't, Git, andG$twould
be correlated because of economy-wide fluctuations, as captured by
Ft. However, if the N2 employment series are derived from two differ-
ent surveys, specifying two employment subblocks would allow us to

model the two independent signals about the state of the labor market.

To close the model, theidiosyncratic components, the subblock-

specific, block-specific, and economy-wide factors are assumed to

be stationary, normally distributed autoregressive processes of order

qzbsn,qxbn,qHbsrqGbp and qFv respectively. That is, forb = 1,. . . ,B,

^fF.k(l)Fkt = *Fkt> *Fk~ N(0, oļk) k= 1,. . . ,Kf,

^G.bj(L)eGbjt = *Gbjt, *Gbj~ N (0, OQbj) j = 1,. . .,KGb,
^H.bsi(L)eHbsit = *Hbsit> tHbsi~ N (0, o2Hbsi)i = l,...,KHbs,
tyx.bn(L)eXbnt= *Xbnt, *Xnbt~ N (0, o'bn) n= 1,. . .Nb,
tyz.bsn(Lò^Zbsnt- ^Zbnsti ^Znbst~ Af(0, ^zbsn) H- 1»••-Nbs.

The lag orders can differacross units, subblocks, and blocks. Themodel
could befurtherenriched by allowingforstochastic volatility orMarkov

switching effects at differentlevels of the hierarchy.
The factors and theloadings are not separately identified even in a

two-level dynamic factor model. To see this,let Xt= (X't, . . . ,Xut)'
so thatin vector form,the observation equation of the model is Xt=
A (L)Ft+et. Obviously there could exist an invertible polynomialmatrix

0(L) of arbitraryorder such thatthe common component A (L)Ft is

observationally equivalent to Ã(L)Fr, where Ã(L) =A(L)0(L) and

Ft = 0(L)_1F,. To achieve identification, two-level models often

assume thatA(L) = A is a constant lower triangular matrix of order 0
where the elements on the diagonal have a fixed sign (see Geweke &
Zhou, 1996; Aguilar&West, 2000). The assumption of constant, lower

triangular factor loading matrices can still be used to handle multiple
factors in a hierarchical setting. Note thatthe lower triangular struc-

tureis necessary but not sufficient foridentification when 'n(L) has

lagged dynamics. As shown in theorem 3 of Heaton and Solo (2004),
additional restrictions on thepolynomial structure will be necessary
even fortwo-level models. Since the data are standardized to have
unit variance, we furtherassume thatinnovations to the factors have
fixed variances. Then VF,WGb,^H.bs, v|rx.bn,A?z.bsn,and the idiosyn-
cratic variances oXbnand ozbsnare free parameters thatadjust to satisfy
the variance decomposition identity.

A unique feature of the hierarchical structure is thatthe transition

equation at the block and subblock level has a time-varying intercept
since the autoregressive dynamics of ecbjtimply that

tyG.b(L)Gbt = tyG.b(L)AF.b(L)Ft +*Gbt-

This leads to the block-level transition equation,

Gbt= <*F.bt+ ^G.b'Gbt-' + ••-+ ^G.bqGbGbt-qGb + *Gbt> W

where aF.bt= Vab(L)AF.b(L)Ft is correlated across blocks due to Ft.

Intuitively, knowledge of the comovement across blocks is useful in

estimating the block-specific dynamics. Similarly, the dependence of

Ht on G, implies that

Hbst= 0lG.bst+ ^H.bs'Hbst-' + •••+ ^H.bsqHbsHbst-qHbs+ *Hbst,

where OLG.bst= (L)AG¿s (L)Gbtis common across subblocks. In
section ÜB, we show how this additional term can be incorporated into

a standard sampling method forlinear state-space models. Section A.l
in the appendix summarizes the main equations of the four-level model.

A. Related Work

A vast number ofpapers inmacroeconomics and finance have studied
variants of the two-level dynamic factormodel. The difference between
our multilevel and a two-level model is best understood when there is
a single factor at each level. With KGb= KF = 1,

Xbnt= ^■G.bO^F.b^t+ eGbt)+ exbnt
= "^bn^tVbnt> (5)

where 'bn = and vbnt= 'nGbeGbt+ eXbnt•A standard two-

level factor model ignores the block structure and simply stacks all
observations up. The data would be modeled as

Xnt= XflF%~l"V/ļ/.

This two-level representation corresponds to an exact factormodel ifthe
block-specific components {eGbt: b - 1,. . .,B] were 0 forall ř,but is
an approximate factormodel ifvntwas weakly correlated acrossnand t.
Weak cross-sectional correlation requires thatthe variation in vbntis not
dominated by eGbtas N -» oo and Nb -►oo. Instead of imposing this
possibly invalid assumption, our hierarchical model explicitly specifies
the block structure. The factors are also easier to interpretbecause the
data blocks have a well-defined interpretation.

Multilevel factormodels have been considered extensively in the psy-

chology literature. As seen from the review in Goldstein and Browne

(2002), forexample, these models do not allow fordynamics and typ-
ically assume thateither T or N is small. Dynamic hierarchical linear
models were considered by Gammerman and Migon (1993), but there

are no latent variables.
Two models closely related to ours are Diebold, Canlin, and Yue

(2008) and Giannone, Reichlin, and Small (2008). Diebold et al. (2008)
study a three-level hierarchical factormodel forgovernment bond yield
data from four countries. They estimate their model in two steps.

Country-level yield factors are firstestimated by nonlinear least squares
and then treated as data in the estimation of the global factors. Hence,
theydo not take into account the global factor dynamics in theesti-
mation of the country-level block factors. Giannone et al. (2008) are

interested in taking advantage of the differenttiming of data releases
forthe purpose of "now-casting." First, theyestimate thestatic fac-

tors in a two-level model by principal components. Then theyestimate

the loadings in a second step using Kaiman filteringand smoothing

techniques.
Kose, Otrok, and Whiteman (2003, 2008) use multilevel factor

models to study international business cycle comovements. For each
observable variable nin country b, theyhave

Xbnt= CnFt+ dbneGbt+ exbnt^

where Ft is a world factor,eGbtis a common shock specific to region b

(such as Europe orAsia), and eXbntis a component specific to variablen
in country b. A similar framework has been used by Stock and Watson

(2009) to analyze national and regional factors in housing construction.

While we take a bottom-up approach, which explicitly estimates the
factors at each level, their top-down approach yields only a block-level
component eGbtthatis orthogonal to Ft. Thus Kose et al. (2003, 2008)
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NOTES 1813

can estímate only European or Asian factors thatare uncorrelated with

theglobal factors, but not factors forthose regions per se. Another

important difference is thatcnis unconstrained in Kose et al. (2003),
which vastly increases the number of parameters to estimate. Since we

impose thatGbtis linear in Fř,the responses of shocks to Ft forall
variables in block b can differonly to the extent thattheir exposure to

theblock-level factors differs.Because ofthishierarchical structure, we
have a total ofKG x KF andN x Kg parameters characterizing loadings
on Ft and Gt,whereas Kose et al. (2003) have N x KF and N x Kg
parameters, respectively. As Kg is much smaller thanN, our framework
is more parsimonious.

B. Estimation via Markov Chain Monte Carlo

The simplest way to estimate the hierarchical model is to firstesti-
mate Ht subblock by subblock via principal components, then estimate

Gtfromtheprincipal components estimates ofHt, and finally estimate

Ftfromtheprincipal components estimates of Gt. However, sequen-
tial estimation by principal components would not take into account
thedependence of Ht on Gtand Gton Ft through aGt and aFt, respec-
tively.Furthermore, principal components estimates thestatic and not
thedynamic factors.

Kose et al. (2003) use Gibbs sampling to estimate latent dynamic
factors. By considering their conditional joint distribution, theyhave
toinverta variance-covariance matrix of rank T at each sweep of the

sampler. The procedure is computationally costly when N and T are
both large. We put more structure on the factors between levels, and
we exploit theprediction errordecomposition of Ft and Gtto avoid

inverting large matrices.

Specifically, we use theMCMC, which samples aMarkov chain that
has theposterior density of the parameters as itsstationary distribution.
Kim andNelson (2000) and Lopes andWest (2004), among others, have
used thealgorithm proposed in Carter and Kohn (1994) and Friihwirth-
Schnatter (1994) to estimate two-level factormodels with a single factor.
We generalize thealgorithm to allow fora multilevel structure with

multiple factors.
Let A = (Atf,Ac,AF),¥ = (^F, *g, *z), E =

(IV, Eg, E//,Ez)- The main steps are:

1. Organize thedata into blocks and subblocks to yield Zbst,b =
1,. . .B,s = 1,. . .Bs. Get initial values for{Ht},{G,}, and {F,}
using principal components. Use these to produce initial values
forA,*,Z.

2. Conditional on A, ¥, Z, {Gbt} and the data Z^r, draw

{Hbst} VHi.
3. Conditional on A, ¥, E, {Hbt} and {F,}, draw {Gbt} V b.
4. Conditional on A, ¥, E, and {Gt}, draw {F,}.
5. Conditional on {F,}, {G,}, and {//,},draw A, and E.
6. Return to 2.

To analyze series Xbntwithout a subblock structure,Ht would be

dropped fromthe algorithm and step 2 would be omitted. To analyze
series Xntwithout a block structure,Gtas well as steps 2 and 3 would
be omitted, and thealgorithm reduces to thatfora two-level model.
The only complication going from the two-level to a multilevel model
is thatthetransition equations forthe subblock and the block-specific
factors feature time-varying intercepts thatdepend on the factors at the
next higher level. This dependence needs to be taken into account in

sampling thefactors.
Denote Sgòtheset of parameters {AG.b,̂Gb^Gb* The mod-

ified algorithm consists of firstrunning the Kaiman filterforward to
obtain thesequence {Gbt'tithataccounts foraF¿t and the corresponding

covariance matrix Pgòt't in period T based on all available sam-

ple information. This implies the following prediction and updating
equations:

Gbt+l't = aF.bt+ ýGJ>Gbt't*
PGbt+l't = ^ G.bPGbt't^G.b+ ^G.b>

Gbt't= Gbt't-1+ PGbt't-' ^G.b

X
{j^G.bPGbt't-'^G.b

+ (Xbt
-

ÃG.bGbt't-' ) ,

PGbt't= PGbt't-'
- PGbt't-i^G.b

X
(^G.bPGbt't-Ì^G.b

+ &G.bPGbt't-''

We can then sample theentire set of factor observations conditional
on the parameters Ecb and all the data. The Gaussian and Markovian
structure of the state-space model imply thatthedistribution of Gbt
given Gbt+1andXbtis normal. Thus,

Gbt'Xbt,G*bt+¡,Sab ~ N
(^4(|(,c*,+|"Pgí.(|(,G*(+1) -

where using and &Gb to denote thefirstKGbrows of Gbt+i and
^ G.b,respectively:

Gbt't,ö*bt+i
= E[Gbt'Xbt,G*bt+i]

= Gbt't+ PGbt't^G.b {^*G.J>Gbt't^G.b
+

X (Gbt+l
- <*F.bt+1- VcbGbt't)-

PGbt't,G*t+,
= Var (Gbt IXbt»Gļt+ ļ)

= Pcbt't- Pcbtlt^ab {^G.b^Gbt't^G.b
+

X^Gb?Gbt't'

Given these conditional distributions, we can then proceed backward to

generate draws Gļ, fort= T- 1,. . .,1.The subblock factors Hbstare
sampled in an analogous manner, taking into account thedependence
on the block-level factors via the time-varying intercept acost-

ili. A Four-Level Model ofReal Activity

We illustrate our model with a hierarchial factor analysis of real
economic activity in the United States using a balanced panel of 445

monthly time series from 1992:01 to 201 1:03. The data include series on
capacity utilization, industrial production, manufacturers' shipments,
inventories and orders of durable goods, thelabor market as perceived
by firmsand households, retail sales, wholesale trade, housing starts,
new home sales, and manufacturing surveys.

We arrange the data into fiveblocks: production, employment, con-

sumption, housing, and manufacturing surveys. The housing block

comprises data on housing startsand new home sales, while theman-

ufacturing survey block combines data fromtheInstitute forSupply
Management, the Philadelphia Fed, and the Chicago Fed. The other
three blocks have subblocks thatare defined as follows. Industrial

production (IP), capacity utilization (CU), and durable goods (DG)
constitute the production block; the establishment survey (ES) and the
household survey (HS) constitute the employment block; retail sales
(RS) and wholesale trade (WT) constitute theconsumption block. Our
blocks are thus defined using prior information aboutthestructureofthe
data. An analysis could also be conducted with theblocks determined

by statistical criteria such as suggested by Hallin and Liska (2008).
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Table 1.- Data andModel Structure

Block Subblock Source N Kubs
Production CU Fed 25 1

IP Fed 38 1
DG Census 60 2

Employment ES BLS 82 2
HS BLS 92 1

Consumption WT Census 54 1
RS Census 30 1

Housing Census 29
Manufacturingsurveys ISM, Fed 35

Thistablesummarizestheblockstructureofthefour-levelmodelofrealactivityintheUnitedStates
discussedinsectionIII.Thedatasourcesforthevariablesintheblock,thenumberofseriesNintheblock,
aswellasthenumberofestimatedsubblockfactorsKnbsareprovided.FeddenotestheFederalReserve,
BLStheBureauofLaborStatistics,CensustheCensusBureau,ISMtheInstituteofSupplyManagers.

However, theprior information facilitates interpretation of blocks and
the factor estimates.

We assume thatthe factor loadingmatrix is constant and estimate one
common factor,one common factor per block, and one or two factors

per subblock.1 For the two subblocks with Knts = 2, we follow Aguilar
and West (2000) and assume a lower triangular factor loading matrix
with l's on the diagonal:

1 0

"^H.bs2ti 1
AH.bs= ^H.bs3i XH.bs32 '

_ .bsNbSļļ .bsNbs2_

This normalization implies thatin the presence of multiple subblock-
level factors, the firstfactor loads only on the variable ordered firstin
a given subblock. Itfurtheridentifies thesigns of the factors. We order
firstthe series thought most likely to represent the subblock dynamics.
A summary of the data structure is provided in table 1.The data are
transformed to be stationary using Stock andWatson (2008) as a guide.
After the data transformation, our sample effectively startsin April
1992, giving T = 227 observations forall blocks. A list of all 445
series is provided in theonline appendix.

We assume the prior distribution forall factor loadings A and auto-
correlation coefficients ^ to be Gaussian with mean zero and variance
1.The prior distribution forthe variance parameters is thatof an inverse
chi square distribution with v degrees of freedom and a scale ofd where
v and d2 are set to 4 and 0.01, respectively. After discarding the first
50,000 draws as a burn-in, we take another 50,000 draws, storing every
fiftiethdraw. The reported statistics forposterior distributions are based
on these 1,000 draws. We use the principal components estimates of the
factors as initial values forFt, Gt,and Ht. As a cross-check, we run the

MCMC algorithm using randomly generated numbers forthe factors as
starting values and findthatitconverges to thesame posterior means.
We also run the sampler on simulated data and findthatitconverges to

the trueposterior means.

A. Comparison with Principal Components

Let a tilde denote estimates obtained by the method ofprincipal com-

ponents, and let a "hat" denote estimates obtained from our MCMC
algorithm. The IC2 criterion of Bai and Ng (2002) suggests two static
factors in our panel of 445 time series. If block-level variations are

1We startedbyestimating two factorsforeach subblock and dropped
factorswhose posterior distributionwas nottightlyestimated.

Table 2.- Correlation of enwith GbjtandHbsit
r Blockj Factorj R2
1 Employment 1 0.16
2 Employment 1 0.17
2 Manufacturingsurveys 1 0.25

Blockj Subblock s Factori R2
1 Production IP 1.00 0.29
1 Production DG 2.00 0.25
1 Employment ES 1.00 0.22
1 Employment ES 2.00 0.14
2 Production CU 1.00 0.17
2 Production DG 2.00 0.36
2 Employment ES 2.00 0.55
2 Consumption RS 1.00 0.15

ThistablesummarizestheR2,sobtainedfromregressionsofenontoòbtandŘbst.ēnistheresidual
fromaregressionofFrlonF,whereFnistherthfactorestimatedbyprincipalcomponentsandF,isthe
posteriormeanoftheaggregatefactorfromthefour-levelmodelofrealactivityestimatedusingMCMC.

Figure 1.- Comparison to Principal Components Estimates

ThisfigureplotstheposteriormeanofthecommonfactorestimateF(solidline)fromourfour-levelmodelofrealactivityalongwiththefirstprincipalcomponentF (dashedline)extractedfromtheentire
datapanel.ShadedareasindicateNBERrecessions.Thesampleperiodis1992:04to2011:03.

important, the principal components extracted fromthe entire panel
of data might capture block-specific rather than aggregate common

dynamics. A regression of the principal components Fn on Ftyields
residuals ertforeach r= 1,. . .,2. These are variations deemed com-
mon by the method of principal components but not by our hierarchical
model.We use regressions oferton eGbjtand èHbsitto check ifthese resid-
uals can be explained by our estimated block- and subblock-specific
components.

Table 2 reports the R2 of these regressions thatexceed 0.1.The resid-
uals associated with both the firstand thesecond principal component
are correlated with the employment block factor,while e21is correlated
with Manufacturing Surveys. The residuals ê't and e2tare correlated
with all three subblocks of production. The largest correlation of 0.55
is between e2tand the second factor in the establishment survey sub-

block. Furthermore, e2thas a correlation of0.36 with thesecond durable

goods factor.A possible explanation as to why principal components
treatthese variations as pervasive is thatthe employment and durable

goods data are overrepresented (in terms of number of series) in the
panel.

Figure 1graphs our Ft and the firstprincipal component F't. Note
thatFt is noticeably smoother than F't. For example, Fu features large
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Table 3.- Decomposition ofVariance

Block Subblock Sharep Sharec Shareh Sharez

PosteriorMean (Standard Deviation)

Production CU 0.137 (0.027) 0.031 (0.006) 0.030 (0.005) 0.802 (0.035)
Production IP 0.162 (0.028) 0.037 (0.006) 0.027 (0.005) 0.773 (0.035)
Production DG 0.032 (0.010) 0.007 (0.002) 0.177 (0.039) 0.784 (0.046)
Employment ES 0.012 (0.007) 0.122 (0.025) 0.213 (0.035) 0.652 (0.049)
Employment HS 0.003 (0.002) 0.026 (0.011) 0.109 (0.030) 0.863 (0.037)
Consumption WT 0.031 (0.011) 0.033 (0.010) 0.031 (0.010) 0.906 (0.029)
Consumption RS 0.010 (0.005) 0.011 (0.005) 0.106 (0.029) 0.874 (0.034)
Housing 0.010 (0.006) 0.074 (0.018) 0.916 (0.018)
Manufacturingsurveys 0.034 (0.015) 0.096 (0.026) 0.871 (0.035)

Thistablesummarizesthedecompositionofvarianceforthefour-levelmodelofrealactivity.Foreach(sub)blockofdata,sharep,sharec,shareh,andsharezdenotetheaveragevarianceshareacrossallvariablesintheblockduetoaggregate,block-level,subblock-levelandidiosyncraticshocks,respectively.

spikes in 1996 thatare not prevalent in our common factor estimate Ft.
One potential explanation forthis relates to the government shutdown
of the budget in January 1996. Due to thelarge number of employment-
related series in the data set,thefirstprincipal component extractedfrom
the panel puts a lot of weight on this block-level event. In contrast,
itis appropriately treated as variations associated with the employ-
ment block in ourmodel. Notice also thatour estimated common factor

nicely tracks the two recessions in our sample period. According to the
common factor estimate, real activity bottomed at theend of 2001, con-
sistent with theofficial NBER business cycle chronology thatreports
November 2001 as thetrough of therecession. The estimated factor

also documents thestriking collapse of real activity in late 2008 and its
subsequent sharp rebound in early 2009.

B. Importance ofBlock-Level Variations

Our model can be used to compute theimportance of the aggre-
gate (shareF' block-specific {sharec), and subblock-specific {shareH)
components as well as idiosyncratic noise {sharez) relative to the total
variation in the data.

A two-level factor model does not distinguish between Ft and Gtor
Ht. Table 3 reports theposterior means and standard deviations of the
estimated variance shares forall blocks and subblocks of our data set.
The latter show thatall shares are precisely estimated.

For housing and manufacturing (which have no subblock struc-
ture), theblock-specific variations, dominate the aggregate variations,
as sharec is much larger than shareF. The capacity utilization and
industrial production subblocks of production both have shareF of
around 0.15, while sharec and shareh are around 0.10. However,
fordurable goods in the same block, shareF and shareG are much
smaller than shareh . Each of thetwo subblocks in theemployment
block also features larger sharec and shareh than sharep. Interestingly,
in all categories, sharez exceeds 0.65 highlighting theimportance of

series-specific shocks.
The hierarchical model also allows us to track the developments in

certain sectors of theeconomy. Figure 2 plots theestimated aggregate
factor F, along with Gfortheemployment and thehousing block. Lead-
ing into the 2001 recession, housing activitywas stronger than aggregate
activity Ft and only retracted brieflyduring the recession. The recession
of 2001 was followed by a jobless recovery as the employment factor
failed to keep pace with Ft aftertherecession. In themost recent reces-
sion of 2008-2009, housing activity declined well ahead of aggregate
activity as measured by Ft and dropped back to negative growth rates
aftera brief recovery. Figure 2 thus shows thatcomovement in eco-
nomic time series can coexist with heterogeneous variations between

blocks. The hierarchicalmodel allows us to jointlymodel these common
variations at differentlevels.

IV. Conclusion

This paper lays out a framework in which the effects of aggregate,
block-level, and idiosyncratic shocks can be coherently analyzed while
still achieving a reasonable level of dimension reduction. By extract-

ing common components fromblocks, the estimated factors have a
straightforward interpretation. While multilevel models are computa-
tionally more demanding than two-level models, explicitly modeling
theblock level variation also makes itless likely thatshocks at the
block level will be confounded with genuinely common shocks. Esti-
mation requires only a simple variation to existingMCMC methods for
estimating two-level factor models.

Figure 2.- Four-LevelModel of Real Activity with Five Blocks

ThisfigureplotstheposteriormeanofthecommonfactorestimateP(solidline)alongwiththeposteriormeansoftheblock-levelfactorsò fortheemployment(dashedline)andhousing(dash-dotted)block,
respectively,estimatedfromourfour-levelmodelofrealactivityintheUnitedStates.Shadedareasindicate
NBERrecessions.Thesampleperiodis1992:04to2011:03.
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Block Subblock Sharep Sharec Shareh Sharez

PosteriorMean (Standard Deviation)

Production CU 0.137 (0.027) 0.031 (0.006) 0.030 (0.005) 0.802 (0.035)
Production IP 0.162 (0.028) 0.037 (0.006) 0.027 (0.005) 0.773 (0.035)
Production DG 0.032 (0.010) 0.007 (0.002) 0.177 (0.039) 0.784 (0.046)
Employment ES 0.012 (0.007) 0.122 (0.025) 0.213 (0.035) 0.652 (0.049)
Employment HS 0.003 (0.002) 0.026 (0.011) 0.109 (0.030) 0.863 (0.037)
Consumption WT 0.031 (0.011) 0.033 (0.010) 0.031 (0.010) 0.906 (0.029)
Consumption RS 0.010 (0.005) 0.011 (0.005) 0.106 (0.029) 0.874 (0.034)
Housing 0.010 (0.006) 0.074 (0.018) 0.916 (0.018)
Manufacturingsurveys 0.034 (0.015) 0.096 (0.026) 0.871 (0.035)

Thistablesummarizesthedecompositionofvarianceforthefour-levelmodelofrealactivity.Foreach(sub)blockofdata,sharep,sharec,shareh,andsharezdenotetheaveragevarianceshareacrossallvariablesintheblockduetoaggregate,block-level,subblock-levelandidiosyncraticshocks,respectively.

spikes in 1996 thatare not prevalent in our common factor estimate Ft.
One potential explanation forthis relates to the government shutdown
of the budget in January 1996. Due to thelarge number of employment-
related series in the data set,thefirstprincipal component extractedfrom
the panel puts a lot of weight on this block-level event. In contrast,
itis appropriately treated as variations associated with the employ-
ment block in ourmodel. Notice also thatour estimated common factor

nicely tracks the two recessions in our sample period. According to the
common factor estimate, real activity bottomed at theend of 2001, con-
sistent with theofficial NBER business cycle chronology thatreports
November 2001 as thetrough of therecession. The estimated factor

also documents thestriking collapse of real activity in late 2008 and its
subsequent sharp rebound in early 2009.

B. Importance ofBlock-Level Variations

Our model can be used to compute theimportance of the aggre-
gate (shareF' block-specific {sharec), and subblock-specific {shareH)
components as well as idiosyncratic noise {sharez) relative to the total
variation in the data.

A two-level factor model does not distinguish between Ft and Gtor
Ht. Table 3 reports theposterior means and standard deviations of the
estimated variance shares forall blocks and subblocks of our data set.
The latter show thatall shares are precisely estimated.

For housing and manufacturing (which have no subblock struc-
ture), theblock-specific variations, dominate the aggregate variations,
as sharec is much larger than shareF. The capacity utilization and
industrial production subblocks of production both have shareF of
around 0.15, while sharec and shareh are around 0.10. However,
fordurable goods in the same block, shareF and shareG are much
smaller than shareh . Each of thetwo subblocks in theemployment
block also features larger sharec and shareh than sharep. Interestingly,
in all categories, sharez exceeds 0.65 highlighting theimportance of

series-specific shocks.
The hierarchical model also allows us to track the developments in

certain sectors of theeconomy. Figure 2 plots theestimated aggregate
factor F, along with Gfortheemployment and thehousing block. Lead-
ing into the 2001 recession, housing activitywas stronger than aggregate
activity Ft and only retracted brieflyduring the recession. The recession
of 2001 was followed by a jobless recovery as the employment factor
failed to keep pace with Ft aftertherecession. In themost recent reces-
sion of 2008-2009, housing activity declined well ahead of aggregate
activity as measured by Ft and dropped back to negative growth rates
aftera brief recovery. Figure 2 thus shows thatcomovement in eco-
nomic time series can coexist with heterogeneous variations between

blocks. The hierarchicalmodel allows us to jointlymodel these common
variations at differentlevels.

IV. Conclusion

This paper lays out a framework in which the effects of aggregate,
block-level, and idiosyncratic shocks can be coherently analyzed while
still achieving a reasonable level of dimension reduction. By extract-

ing common components fromblocks, the estimated factors have a
straightforward interpretation. While multilevel models are computa-
tionally more demanding than two-level models, explicitly modeling
theblock level variation also makes itless likely thatshocks at the
block level will be confounded with genuinely common shocks. Esti-
mation requires only a simple variation to existingMCMC methods for
estimating two-level factor models.

Figure 2.- Four-LevelModel of Real Activity with Five Blocks

ThisfigureplotstheposteriormeanofthecommonfactorestimateP(solidline)alongwiththeposteriormeansoftheblock-levelfactorsò fortheemployment(dashedline)andhousing(dash-dotted)block,
respectively,estimatedfromourfour-levelmodelofrealactivityintheUnitedStates.Shadedareasindicate
NBERrecessions.Thesampleperiodis1992:04to2011:03.
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APPENDIX
Al. Four-LevelModel: State-Space Representation

Stacking all variablesZbsntina subblock andpseudo-differencingtheseri-
ally correlated idiosyncratic components ezbsnt,we canwritetheobservation
equation atthesubblock level as

Zbst= AH.bs(L)Hbst + €a„„ Vfc= l,...,Z?,Vs= l,...,2?s,

where Zbst= Vz.bs(L)Zbst and ÃH.bs(L) = Vz.bs(L)AH.bs(L) is aNbx KHbs
matrixpolynomial of order ¡1 = qz + lH.Moreover, thestateequation at
thesubblock level is

Hbst= OiGJfst+ ^H.bs'Hbst-' H Ĥ H.bsqHHbst-qH+ *Hhst

where

&G.bst= *H.bs(L)Aabs(L)Gbt, Vb = 1,.. .,*, V j = 1,.. .,5.

Together, these two equations imply thefollowing state-space form:

< Hbs,>

[wÃHJ>SOÃHJjsí ÃHbsi*H'
«. "I Hbst-

.
I

ÃHJ>SOÃHJjsí ÃHbsi*H'
«.
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/ Hbs,' /aci)sA
■■• *H.bsqH0 •••

01
/

Hb t i X

Hbst-1 0 10'' Hbst-2
+

'Hbst-rJ V 0 / L o ... j 0...0J 'Hbst-rH-J

f*Hbst'
0

+

V 0

or

^bst= AH.bsHbst+ *Zbst (Al)
Hbst= <*G.bst+ ^HbsHhst-l H"€Hbst (A2)

For blocks thatdo have a subblock structure,theobservation and state
equation attheblock level become

(
Gbt

'
r_ ] Gbt-i

Hbt= IAG.bOAc.M••• AG.bl*GJ . + *Hbt

'Gbt-rc /

/ Gbt' <*fjh' r^M-^O-Oļ
/ G¡>(_,>

Gbt-i 0 j 0 Gbt-2
+

'Gbt-rcJ V 0 / [0 ... I 0 ••• OJ 'Gbt-rG-i/

f*Gbt^
0

+

V 0

or

Hbt= ÃGJjGbt+ €//*,„ (A3)
Gbt= &F.bt+ ^G.bGbt-1+ *Gbť (A4)

For blocks thatdo nothave a subblock structure,theobservation and
stateequation attheblock level are

Xbt= AG.b(L)Gb, + 6Xbt
and Gbt= aFjt>t+ ^G.b'Gbt-' + . . .+ ^G.bqGbGbt-(ļGb^Gbt

where Xbt= Vx.b(L)Xbt and Aab{L) = Vx.b(L)Aab(L) is a Nbx
KGbmatrixpolynomial of order l*G= qx + Ig-Furthermore,dF.bt=
WG.b(L)AF.b(L)FtyV b = 1,... ,5.

Finally, we have thefollowing observation and stateequations atthe
aggregate level:

G, = Ãf(L)F, + €C,, (A5)
and Ft= + . . .+ ^F.qFFt-qF + €/?,, (A6)

where Gt= VG(L)Gt and ÃF(L) = VG(L)AF(L) is a Kc x KF matrix
polynomial of order ¡1 = qG+ If-
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A2. Variance Decomposition

The totalunconditional variance foreach individual variable Zbsncan be
decomposed according to

Var(Zfes„)= ýFbsnvec(yai(F)) + y'Gbmvec(Wai(eGh)) + ■■■
+ YH.í,OTvec(Var(ewfo))+ vec(Var(ezbm)) (A7)

where

Yfíw!= ® X ^G.bs(0 ®

YG.¿WI= ^H.bsnV)® X ^GiwW ® ^Giw

Yf/.fe«- ®

If
vec(Var(F)) = /- £ (4V., <g>VpJ vec(EF)

9=1

qcb
vec(Wai(e0b)) = /- ^ x vec(EGt)

q=ì

(ļHbs
vec(Vat(eHbs)) = I - ^ (^ii, ® *h.¿»,,) x vecC£HJ

9=1

IZbsn
Vec(Ww(ezbsn)) = 1- £ ^L™, * °Ln-

1=1
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